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Abstract
Supersymmetrical intertwining relations of second order in the derivatives are
investigated for the case of supercharges with deformed hyperbolic metric
gik = diag(1,−a2). Several classes of particular solutions of these relations
are found. The corresponding Hamiltonians do not allow the conventional
separation of variables, but they commute with symmetry operators of fourth
order in momenta. For some of these models the specific SUSY procedure of
separation of variables is applied.

PACS numbers: 03.65.−w, 03.65.Fd, 11.30.Pb

1. Introduction

Two-dimensional supersymmetric quantum mechanics [1] with supercharges of second order
in derivatives was shown to be instrumental in building new integrable two-dimensional
quantum and classical systems which do not allow the standard separation of variables
[2–6]. All such systems have, by construction, symmetry operators of fourth order in momenta
which, as a rule, are not reducible to lower order. Therefore, these models do not allow the
conventional separation of variables (for definitions see [7]).

The possible intertwining operator—supercharges—can be easily classified into four
inequivalent classes depending on their metrics gik [4]. The intertwining relations of second
order can be represented in the form of a system of six nonlinear partial differential equations
involving two partner potentials plus six functions defining the supercharge. It does not
seem to be possible to solve this system in a general form. Till now, only some particular
cases of constant metric were investigated [2–6]: elliptic (Laplacian) gik = δik , Lorentz
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gik = diag(1,−1), and degenerate gik = diag(1, 0). The elliptic case leads to models with
separation of variables and second-order symmetry operators, but the other gave rise to a list of
completely integrable models (with fourth-order symmetry operators) which are not amenable
to separation of variables. Some of these models were found previously by other methods
[8], but some of them are new. We notice that although, in general, there is no direct relation
between the integrability (with symmetry operators of order higher than 2 in momenta) and
the solvability of the system, it was shown that some models with this kind of integrability
allow partial [3] or even complete [6] solvability by means of SUSY methods.

Only one class of intertwining supercharges with constant metric in the supercharges
was not yet investigated: the case of a diagonal matrix gik = diag(1,−a2), a �= 0,±1.
Just the study of this kind of intertwining relation is the objective of the present paper, the
corresponding metric being naturally called a ‘deformed hyperbolic’ one.

The paper is organized as follows. In section 2 the solution of the intertwining relations
with deformed hyperbolic metrics is performed, in such a way that the unknown functions
satisfy a unique nonlinear functional-differential equation. Since the general solution of
this equation is very difficult to find, some suitable ansätze are investigated in section 3, and
particular solutions of the intertwining relations are obtained explicitly. In section 4 the special
case when variables are separated only in one of the partner Hamiltonians is considered. A
new SUSY-algorithm of separation of variables for the second partner potential is proposed
for this particular class of models. In section 5 we consider the solution of the intertwining
relations with deformed hyperbolic metric when one of the partner is chosen to be the isotropic
harmonic oscillator. It is shown that its superpartner necessarily allows separation of variables
too. Some final conclusions put an end to this paper.

2. SUSY intertwining relations for supercharges with deformed hyperbolic metric

Let us consider the SUSY intertwining relations

H1Q
+ = Q+H2 Q−H1 = H2Q

− (1)

between two two-dimensional partner Hamiltonians of Schrödinger type

H1,2 = −� + V1,2(�x) � ≡ ∂2
1 + ∂2

2 ∂i ≡ ∂/∂xi �x = (x1, x2) (2)

with second-order supercharges of the form

Q+ = gik(�x)∂i∂k + Ci(�x)∂i + B(�x) Q− = (Q+)†. (3)

These intertwining relations realize the isospectrality (up to zero modes of Q±) of the
superpartners H1,H2 and the connection between their wavefunctions with the same values
of energy:

�(1)
n (x) = Q+�(2)

n (x) �(2)
n (x) = Q−�(1)

n (x) n = 0, 1, 2, . . . . (4)

Equations (1) are equivalent [2] to the following system of six nonlinear partial differential
equations

∂iCk + ∂kCi − (V1 − V2)gik = 0 (5)

�Ci + 2∂iB + 2gik∂kV2 − (V1 − V2)Ci = 0 (6)

�B + gik∂i∂kV2 + Ci∂iV2 − (V1 − V2)B = 0 (7)

where, for simplicity, the explicit dependence of the functions on the variables has been
eliminated.
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For the particular case gik = diag(1,−a2), a �= 0,±1, considered in this paper, the three
equations in (5) take the form:

2∂1C1 = v 2∂2C2 = −a2v (8)

∂1C2 + ∂2C1 = 0 (9)

where the notation v(�x) ≡ V1(�x) − V2(�x) has been introduced. From equation (8) one can
easily express the three functions C1,2 and v in terms of a unique arbitrary function C(�x):

C1(�x) = − 1

a2
∂2C(�x) C2(�x) = ∂1C(�x) v(�x) = − 2

a2
∂1∂2C(�x). (10)

Then, due to (9), the arbitrary function C(�x) must satisfy the second-order wave equation:(
∂2

1 − 1

a2
∂2

2

)
C(�x) = 0. (11)

The new variables x± ≡ x1 ± ax2 are obviously suitable to write the general solution of (11)
in terms of two arbitrary functions C±(x±) as follows:

C(�x) =
∫

C+(x+) dx+ +
∫

C−(x−) dx−. (12)

Therefore, from (10) we obtain

C1(�x) = −1

a
(C+(x+) − C−(x−)) C2(�x) = C+(x+) + C−(x−)

v(�x) = −2

a
(C ′

+(x+) − C ′
−(x−)) (13)

where the prime means derivative of the corresponding function with respect to its argument
(we will also use below the notation ∂± ≡ ∂/∂x±).

The two equations in (6) can be rewritten now in terms of the functions C+, C− and their
derivatives as follows:

−1 + a2

a
(C ′′

+ − C ′′
−) + 2(∂+ + ∂−)(B + V2) − 2

a2
(C ′

+ − C ′
−)(C+ − C−) = 0 (14)

1 + a2

a
(C ′′

+ + C ′′
−) + 2(∂+ − ∂−)(B − a2V2) +

2

a2
(C ′

+ − C ′
−)(C+ + C−) = 0. (15)

Simple linear combinations of (14) and (15) lead to the system:

a∂+(2B + (1 − a2)V2) = −2

a
(C ′

+ − C ′
−)C−(1 + a2)C ′′

− − a(1 + a2)∂−V2 (16)

a∂−(2B + (1 − a2)V2) = 2

a
(C ′

+ − C ′
−)C+ + (1 + a2)C ′′

+ − a(1 + a2)∂+V2. (17)

The consistency condition for these two equations is

∂1∂2
[
a2(1 + a2)V2 − (

C2
+ + C2

−
) − a(1 + a2)(C ′

+ − C ′
−)

] = 0. (18)

Therefore, the partner Hamiltonians can be expressed in terms of the four arbitrary functions
C+(x+), C−(x−), F1(x1) and F2(x2):

H1,2 = −� + V1,2(�x) � = ∂2
1 + ∂2

2 = (1 + a2)
(
∂2

+ + ∂2
−
)

+ 2(1 − a2)∂+∂− (19)
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V1,2(�x) = ∓1

a
(C ′

+(x+) − C ′
−(x−)) +

1

a2(1 + a2)

(
C2

+(x+) + C2
−(x−)

)
+ F1(x1) + F2(x2). (20)

From (16), (17) and (20), one obtains the expression for B :

B(�x) = − 1

a2
C+(x+)C−(x−) − 1 − a2

2a
(C ′

+(x+) − C ′
−(x−))

− 1 − a2

2a2(1 + a2)

(
C2

+(x+) + C2
−(x−)

) − (F1(x1) − a2F2(x2)). (21)

Thus, all these algebraic manipulations transformed the initial problem of solving the
system of differential equations (5)–(7) to expressions (13), (20) and (21) in terms of
arbitrary functions C+(x+), C−(x−), F1(x1), F2(x2), which are restricted by the only remaining
equation (7):

∂+
{
bC ′′

+(x+) + 2C+(x+)
[
C2

+(x+) + C2
−(x−) + 2F(�x)

]}
= ∂−

{
bC ′′

−(x−) + 2C−(x−)
[
C2

+(x+) + C2
−(x−) + 2F(�x)

]}
(22)

where the function F and the constant b were defined as

F(�x) ≡ a2(1 + a2)

1 − a2
(F1(x1) − a2F2(x2)) b ≡ −a2(1 + a2)2. (23)

The connection with previous works on the Lorentz metric case [2–6] can be established very
easily. Indeed, equation (22) should be multiplied by (1 − a2), and the limit a2 → 1 should
be taken. Then, the result given in equation (13) of [3] is straightforwardly obtained.

Since equation (22) is the functional-differential equations for the functions C±, F1,2,
which depend on their own arguments, there are no chances to solve this equation in the most
general form. Nevertheless, in the next section some particular solutions of (22) will be found
by suitably chosen ansätze. In the following we are mainly interested in the models where at
least one of the partner Hamiltonians is not amenable to separation of variables.

3. Particular solutions of intertwining relations

In order to obtain particular solutions of the functional-differential equation (22), some extra
hypothesis must be done. We will consider the following three cases.

3.1. Case in which C−(x−) = 0

A great simplification is obtained if we choose one of the functions C± to be zero. Without loss
of generality, let us consider C−(x−) = 0. Then, one has to solve the second-order equation
for the functions C+(x+), F (�x) :

bC ′′
+(x+) + 2C3

+(x+) + 4C+(x+)F (�x) = U−(x−) (24)

where U− is an arbitrary function. Different possibilities appear here:

(1) U−(x−) = const
From (24), this choice gives immediately that F(�x) actually depends only on x+.
Therefore, from (23), F1,2(x1,2) are at most linear functions of the corresponding
arguments, and F(�x) = c+x+ + c0. This form of F(�x) allows separation of variables
for both Hamiltonians (19): to separate variables one has to rewrite (19) in terms of
z+ = x+ = x1 + ax2 and z− = ax1 − x2. In the variables z± the kinetic part of the
Hamiltonian, in contrast to variables x± (see (19)), does not contain mixed terms, and the
separation of variables for a linear function F becomes evident.
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(2) U−(x−) �= const
In this case, from equation (24), one can express F(�x) as

4F(�x) = U+(x+)U−(x−) − L+(x+) (25)

where the new functions are defined as

U+(x+) ≡ C−1
+ (x+) L+(x+) ≡ bC ′′

+(x+) + 2C3
+(x+)

C+(x+)
= 2[1 + b(U ′

+)
2]

U 2
+

− bU ′′
+

U+
. (26)

The special form (23) of the function F(�x) means that(
∂2

+ − ∂2
−
)
F(�x) = U ′′

+ (x+)U−(x−) − U+(x+)U
′′
−(x−) − L′′

+(x+) = 0

U ′′
+ (x+)

U+(x+)
= U ′′′

− (x−)

U ′−(x−)
≡ η2

(27)

where η is an arbitrary real or purely imaginary constant.
For η = 0, the functions U+(x+), U−(x−) are polynomials of first and second order,
respectively. After their substitution into (27), and comparing with (26), one can check
that both partner Hamiltonians allow separation, either in the variables x± or in the
variables z±.

For η �= 0, the generic form of the functions U± is

U+(x+) = σ+ exp(ηx+) + δ+ exp(−ηx+) (28)

U−(x−) = σ− exp(ηx−) + δ− exp(−ηx−) + δ (29)

where the constant coefficients σ±, δ± must assure the real character of U±(x±). Again,
comparing (27) and (26), after a simple calculation one can obtain that L+ = bη2 δ =
0; bσ+δ+η

2 = 1/4, and

F1(x1) = 1 − a2

4a2(1 + a2)
(σ+σ− exp(+2ηx1) + δ+δ− exp(−2ηx1)) + k1 (30)

F2(x2) = − 1 − a2

4a4(1 + a2)
(σ+δ− exp(+2aηx2) + δ+σ− exp(−2aηx2)) + k2 (31)

where the constants ki are such that k1 − a2k2 = (1 − a4)η2/4. The expressions (20) for
the potentials V1,2 include also the function C+(x+), which has to be found from (26), i.e.

bC ′′
+(x+) + 2C3

+(x+) − bη2C+(x+) = 0. (32)

This equation can be integrated once:

b(C ′
+(x+))

2 = −(
C2

+(x+) − bη2/2
)2

+ C C = const. (33)

For the arbitrary value of the real constant C the function C+(x+) can be expressed in
terms of elliptic functions (see [9]), and the corresponding potentials in (20) will be
written in terms of such C+ and F from (30), (31). Both partner Hamiltonians do not
allow separation of variables.

For the specific value C = 0, equation (33) becomes a couple of Ricatti equations
[10] (let us remind that by definition b = −a2(1 + a2)2 < 0):√−bC ′

+(x+) = ±(
C2

+(x+) − bη2/2
)
. (34)

The solutions are well known:

C+(x+) = ∓ iη
√−b√

2

ν exp(iηx+/
√

2) − ν̃ exp(−iηx+/
√

2)

ν exp(iηx+/
√

2) + ν̃ exp(−iηx+/
√

2)
(35)
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where the constants ν, ν̃ have to keep C+(x+) real.
Choosing the lower sign in (35) one obtains from (20), (30) and (31) the following

expressions for the partner potentials (up to a common constant term):

V2(�x) = F1(x1) + F2(x2) − (1 + a2)η2/2 = 1 − a2

4a4(1 + a2)

× [a2(σ+σ− e2ηx1 + δ+δ− e−2ηx1) − (σ+δ−e2aηx2 + δ+σ− e−2aηx2)] (36)

V1(�x) = V2(�x) − 2

a
C ′

+(x+) = V2(�x) +
2

a2(1 + a2)
C2

+(x+) + η2. (37)

Choosing the other sign in (35) is equivalent to the interchange V1 ↔ V2. The constants in
potential V1 can be tuned so that it grows at | �x| → ∞, and the corresponding Schrödinger
equation will allow separation in terms of the variables x1, x2. The solutions of both one-
dimensional equations can be represented in terms of Mathieu functions [9]. Therefore,
the Schrödinger equation with potential V1(�x) in (37), which does not allow separation of
variables, is isospectral (up to zero modes of supercharges) to the Schrödinger equation
with potential V2 in (36). Since this last potential allows obviously the separation of
variables, one obtains a specific SUSY-separation of variables for potential (37). For
further developments of this model, see section 4 below.

3.2. Two Ricatti equations

The second ansatz which will give some solutions of the intertwining relations, i.e. solutions
of (22), is

C ′
±(x±) = cC2

±(x±) + d (38)

with c, d being arbitrary non-zero real constants. The general solutions of these Ricatti
equations are

C± = d · f±
f ′±

f± = σ± exp(γ x±) + δ± exp(−γ x±) γ ≡ √−cd (39)

where we can have cd > 0 or cd < 0.
Substituting relations (38) into (22), one can check that this last equation takes a simple

form if ca(1 + a2) = ±1, indeed:

∂+(C+(x+)(F (�x) − d/c)) = ∂−(C−(x−)(F (�x) − d/c)) (40)

with F(�x) defined in (23). This partial differential equation for F can be solved in a general
form (see [5]) by introducing the new variables t± ≡ ∫

dx±/C±(x±) :

∂t+(C+C−(F − d/c)) = ∂t−(C+C−(F − d/c)). (41)

Therefore, its general solution is expressed in terms of an arbitrary function M of the
combination (t+ + t−). Hence, we have

F(�x) − d/c = M

(∫
dx+

C+
+

∫
dx−
C−

)/
C+(x+)C−(x−) (42)

where both functions C±(x±) are given by (39). Then, equation (42) reads

F(�x) − d/c = 1

d2
M

(
1

d
ln(f+f−)

)
f ′

+f
′
−/f+f− ≡ U(f+f−)f ′

+f
′
−. (43)
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Now one has to remind the special dependence of F(�x) on �x given in (23), i.e. ∂1∂2F(�x) = 0,
which means that U ′′(f+f−) = 0. Finally, we obtain the following solutions for F1,2 :

F1(x1) = k1(σ+σ− e2γ x1 + δ+δ− e−2γ x1) + k2
(
σ 2

+ σ 2
− e4γ x1 + δ2

+δ
2
− e−4γ x1

)
+ c1

F2(x2) = k1

a2
(σ+δ− e2aγ x2 + σ−δ+ e−2aγ x2) +

k2

a2

(
σ 2

+ δ2
− e4aγ x2 + σ 2

−δ2
+ e−4aγ x2

)
+ c2

where c1 − a2c2 = cd(1 − a4). If we choose c = +1/a(1 + a2), the partner potentials can be
written in an explicit form

V1 = − 8dσ−δ−
a(σ− eγ x− − δ− e−γ x−)2

+ k1(σ+σ− e2γ x1 + δ+δ− e−2γ x1) + k2
(
σ 2

+ σ 2
− e4γ x1 + δ2

+δ
2
− e−4γ x1

)
+

k1

a2
(σ+δ− e2aγ x2 + σ−δ+ e−2aγ x2) +

k2

a2

(
σ 2

+ δ2
− e4aγ x2 + σ 2

−δ2
+ e−4aγ x2

)
(44)

V2 = − 8dσ+δ+

a(σ+ eγ x+ − δ+ e−γ x+)2

+ k1(σ+σ− e2γ x1 + δ+δ− e−2γ x1)) + k2
(
σ 2

+ σ 2
− e4γ x1 + δ2

+δ
2
− e−4γ x1

)
+

k1

a2
(σ+δ− e2aγ x2 + σ−δ+ e−2aγ x2) +

k2

a2

(
σ 2

+ δ2
− e4aγ x2 + σ 2

−δ2
+ e−4aγ x2

)
(45)

up to a common additive constant. The alternative choice c = −1/a(1 + a2) corresponds to
the interchange V1 ↔ V2.

We can observe that by choosing one of the following constants {δ+, σ+, δ−, σ−} to be
zero, we will obtain that only one of the partner Hamiltonians H1,H2 admits separation of
variables. For example, σ+ = 0 allows us to separate variables in H2 (but not in H1); the
two one-dimensional potentials, that appear after separation of variables, are exactly solvable
Morse potentials, and their eigenfunctions are known analytically. The separation of variables
in H2 gives a chance to investigate a whole variety of bound states for the partner Hamiltonian
H1 too. In this sense one can speak of a specific kind of ‘SUSY-separation of variables’ in H1

(for other types of SUSY-separation of variables see also [3, 6] and section 4 below).

3.3. Case in which C ′
±(x±) = cC2

±(x±)

This ansatz is a limit case of the previous one, (38) with d = 0. The corresponding solutions
are

C±(x±) = −1/cx±. (46)

A calculation similar to the one carried out in the previous subsection gives us

F(�x) = (x+x−)M
(
x2

+ + x2
−
)

M ′′ = 0 (47)

F1(x1) = a1x
2
1 + b1x

4
1 F2(x2) = a1x

2
2 + b1a

2x4
2 (48)

V1,2(�x) = 2(1 + a2)

(x±)2
+ a1

(
x2

1 + x2
2

)
+ b1

(
x4

1 + x4
2

)
. (49)

The two isospectral Hamiltonians with potentials (49) do not admit separation of variables4.

4 Due to the coefficients of the attractive singular terms in (49), these Hamiltonians are symmetric operators, but
they have no self-adjoint extensions (see [11]).
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4. SUSY-separation of variables

As we noticed in the examples worked out in the previous section, there are some models for
which one of the partner Hamiltonians allows separation of variables, but the other does not.
This means that the solution of the two-dimensional Schrödinger equation for the separable
Hamiltonian (for example, H2) is reduced to the solution of two separate one-dimensional
Schrödinger problems. Its wavefunctions are expressed as a bilinear combination of these
one-dimensional wavefunctions with arbitrary constant coefficients. We can use the SUSY
intertwining relations (4) to obtain the wavefunctions �(1)

n of H1, one can use �(1)
n from the

now known wavefunctions �(2)
n , acting with the supercharge Q+. But in contrast to the one-

dimensional situation, some additional eigenstates of H1 may exist: if they are annihilated by
Q−, there are no partners in the spectrum of H2. Therefore, our task now is to find all the
normalizable wavefunctions of H1, which are simultaneously the zero modes of Q−.

4.1. The algorithm

To resolve this problem in the case of separation of variables in H2, we will use the following
trick: though the variables are separated neither in H1, nor in Q−, we will consider a linear
combination:

Z ≡ αH1 + βQ− α, β = const. (50)

Let us suppose now the existence of some constants α, β, such that the variables in the
operator Z are separated by some similarity transformation, and its normalizable eigenfunctions
could be found. Then, one has to extract, among these eigenfunctions (by the direct action of
Q−), those which are simultaneously the normalizable zero modes of Q−. If this plan can be
realized, we will reduce the spectral problem for the Hamiltonian H1 (which is not amenable
to conventional separation of variables) to a couple of one-dimensional spectral problems.

Keeping in mind [3] that sometimes the preliminary similarity transformations are helpful
for separation of variables, we will transform the operator Z using a function exp{ϕ(�x)} that
will be determined later on:

Y ≡ e−ϕ(�x)Z eϕ(�x) = (β − α)∂2
1 − (α + βa2)∂2

2 + 2(β − α)(∂1ϕ)∂1

− 2(α + βa2)(∂2ϕ)∂2 − βCk∂k + (β − α)
((

∂2
1 ϕ

)
+ (∂1ϕ)2

)
− (α + βa2)

((
∂2

2 ϕ
)

+ (∂2ϕ)2) − βCk∂kϕ + β(B − ∂kCk) + bV1. (51)

To exclude the first-order derivatives in Y, we have to impose two conditions:

2(β − α)(∂1ϕ) = βC1 −2(α + βa2)(∂2ϕ) = βC2 (52)

which are satisfied if

(α + βa2)∂2C1 = −(β − α)∂1C2. (53)

Comparing with (9), it is clear that the two constants introduced in (50) are related by
2α = β(1 − a2).

Substituting now ∂1ϕ, ∂2ϕ from (52) into (51), we get the expression:

Y = β(1 + a2)

2

(
∂2

1 − ∂2
2 +

∂kCk

1 + a2
− C2

1 − C2
2

(1 + a2)2

)
+β

(
B − ∂kCk +

1 − a2

2
V1

)
. (54)

Taking into account that from (8) ∂kCk = (1 − a2)(V1 − V2)/2 and also (21), one obtains

B − ∂kCk +
1 − a2

2
V1 = B +

1 − a2

2
V2 = − 1

a2
C+C− +

1 + a2

2
(F2 − F1).
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Now using (13), we can write (54) in the form:

Y = β(1 + a2)

2

(
∂2

1 − ∂2
2 − 1 − a2

a(1 + a2)

(
C ′

+ +
C2

+

a(1 + a2)
− C ′

− +
C2

−
a(1 + a2)

)
+ F2 − F1

)
.

(55)

Using the expressions (10)–(13) for Ci , the function ϕ(�x) can be written explicitly in
terms of C±(x±):

ϕ(�x) = −1

a(1 + a2)

(∫
C+(x+) dx+ −

∫
C−(x−) dx−

)
. (56)

Though for generic functions C±(x±) variables in (55) cannot be separated, for some of
ansätze considered before this is just possible due to a specific choice of C±. In particular,
the second ansatz of section 3.1 with η �= 0, C− = 0 and C+ satisfying (34), eliminates all
obstacles to separate variables for (55) in terms of x1, x2. The same happens for the ansatz of
section 3.2, if one of the constants σ+, δ+ vanishes. In this case the functions C±(x±) satisfy
also the Ricatti equation (38), and the potential V2 in (45) allows separation of variables.

In both of these models, the similarity transformation above separates variables, and the
eigenfunctions of the operator Y (and therefore, of Z) can be built from the eigenfunctions of
the corresponding pair of one-dimensional problems.

Now, we will briefly consider the particular case of the model with partner potentials (44),
(45) for σ+ = 0. Then, the physical system is described as

H2 = h1(x1) + h2(x2) h1 = −∂2
1 + F1(x1) h2 = −∂2

2 + F2(x2) (57)

h1ψ1(x1) = ε1ψ1(x1) h2ψ2(x2) = ε2ψ2(x2) (58)

where the two one-dimensional Hamiltonians h1 and h2 are, up to additive constants c1, c2,
Morse potentials with well-known bound states if σ−δ− > 0. For simplicity, we will consider
σ− = δ− ≡ σ and d < 0. Substituting (39) into (13) and (21) one obtains the expression for
the supercharge Q+ :

Q+ = −h1 + a2h2 + Ci∂i +

√
−da(1 + a2)

a2
C− +

(1 − a2)d

a
.

The action of this operator on the wavefunctions �(�x) = ψ1(x1)ψ2(x2) of H2 will give the
wavefunctions (if normalizable) of the partner H1:

Q+�(�x) =
(

a2ε2 − ε1 +
(1 − a2)d

a

)
�(�x) −

√
−da(1 + a2)

a
(∂1 − a∂2)�(�x)

+
C−(x−)

a

(
∂1 + a∂2 −

√
−da(1 + a2)

a

)
�(�x). (59)

The one-dimensional wavefunctions ψ1(x1) and ψ2(x2) are known explicitly (see, for example
[3]) in terms of hypergeometric functions. One can straightforwardly check that the singularity
of C−(x−) at x− = 0 in the last term of (59) cannot be compensated. Therefore, the bound
states �(�x) of H2 have no normalizable partner states in the spectrum of H1. According to the
discussion carried out in the first part of this section, the additional bound states of H1 could
be found among normalizable zero modes of Q−. In the considered model, the operator (55)
takes a simple form (up to a constant factor and a constant additive term), which allows the
separation of variables:

Y ∼ −h1(x1) + h2(x2) +
2(1 − a2)

a(1 + a2)
. (60)
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Then, the eigenfunctions �Z(�x) of the operator Z, defined in (50), are

�Z = eϕ(�x)�Y (�x) = eϕ(�x) · ψ1(x1)ψ2(x2) (61)

where ψ1(x1), ψ2(x2) are arbitrary eigenfunctions of h1, h2, respectively, and the similarity
transformation is performed by

eϕ(�x) ∼ exp(−γ x+)

sinh(γ x−)
. (62)

The singularity of (62) at x− = 0 is responsible of the non-normalizability of all eigenfunctions
�Z(�x), including possible zero modes of Q−. Therefore, the Hamiltonian H1 has no bound
states at all, despite the presence of two Morse potentials in (44).

5. Two-dimensional harmonic oscillator

In the previous successful attempts [2–6] to solve the two-dimensional intertwining relations
of second order (1), the system of nonlinear differential equations (5)–(7) was solved step by
step, and only at the very end some specific expressions for potentials were obtained. Up to
now, it has been impossible to solve these equations straightforwardly, starting from the fixed
form of one of the partner potentials, apart from some very simple examples with separation
of variables in both V1 and V2. The solution of the problem is not so evident in the case
of supercharges with deformed hyperbolic metric. In this section, we will take V2(�x), as an
isotropic harmonic oscillator:

V2(�x) = �
(
x2

1 + x2
2

)
+ v0 = ω

(
x2

+ + x2
−
)

+ 2µx+x− + v0

x± = x1 ± ax2 ω = �(1 + a2)

4a2
µ = −�(1 − a2)

4a2
.

(63)

One can check that a non-isotropic oscillator does not produce any solution of the intertwining
relations. Substituting this potential into (18), we obtain

∂2
+

[
C2

+ +
√−bC ′

+

] = ∂2
−
[
C2

− − √−bC ′
−
] ≡ 2A A = const (64)

where A is an arbitrary constant, and b was defined in (23). The variables are separated, and
the functions C±(x±) satisfy the Ricatti equations:

C2
+(x+) +

√−bC ′
+(x+) = A2x2

+ + A+x+ + a+ (65)

C2
−(x−) − √−bC ′

−(x−) = A2x2
− + A−x− + a−. (66)

Then, equations (16), (17) give the expression for the function B(�x) in terms of C+, C−:

B(�x) = − 1

a2
C+C− − µ(1 + a2) + ω(1 − a2)

2

(
x2

+ + x2
−
)

+
A − a2(µ(1 − a2) + ω(1 + a2))

a2
x+x− + ρ+x+ + ρ−x− + const.

After rather cumbersome but straightforward calculations, one can check that the last
equation to be solved (7) is fulfilled only if, in addition to (65)–(66), one of the functions
C+, C− is linear, for example C−(x−) = σx−. Then, we finally obtain that

V1(�x) = V2(�x) − 2

a
C ′

+(x+) + const. (67)

The Schrödinger equation with such potential V1 does not allow separation of variables in
terms of x± due to the presence of a mixed term in the Laplacian, but it obviously allows



New two-dimensional integrable quantum models from SUSY intertwining 9307

separation in the variables z+ = x+ = x1 +ax2, z− = ax1 −x2, due to the absence of the mixed
term. Therefore, no non-trivial isospectral superpartners of the isotropic harmonic oscillator
can be built in the framework of second-order intertwining relations for superchrages with
constant metric.

6. Conclusions

The investigation of intertwining relations (1) with deformed hyperbolic metric gik =
diag(1,−a2), a �= 0,±1 in the supercharge operator (3), that has been carried out in this
paper, completes the study of second-order intertwining relations with constant matrix gik in
two-dimensional quantum mechanics, which was started in [2–6]. In the present case also
some particular classes of solutions for the partner potentials were found (see section 3).
Among them, there are pairs in which one of the partners allows separation of variables, but
the second one does not. A specific procedure of SUSY-separation of variables is proposed
for this case (see section 4). In a particular model, this new algorithm led to the conclusion
that the system with the attractive potential (44) for σ+ = 0, σ− = δ− does not allow any
bound states. Although the nonlinear equation (18) is not amenable, as a rule, to solution with
a given potential V2 (e.g. for the Coulomb potential), sometimes this is possible. Thus in the
case of one partner being harmonic oscillator, it is shown in section 5 that the second one also
allows separation of variables. All models considered in the paper are completely integrable,
i.e., nontrivial symmetry operators of fourth order in momenta (R1 = Q+Q−;R2 = Q−Q+)

exist for the deformed hyperbolic metric gik also.
A few additional ansätze could be considered in the same manner. In particular, one

can check that the case C−(x−) = const �= 0 (the natural generalization of section 3.1)
leads to a particular solution, obtained above within the ansatz in section 3.2. The partner
of the constant potential V2 = const also allows separation of variables, similar to the case
considered in section 5. In this paper we were only interested in real potentials. Some
models with complex potentials (see [6, 12]) can be considered if for example we allow purely
imaginary a �= ±i or arbitrary values of ν, ν̃ in (35).
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